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ON AN AXISYMMETRIC BOUNDARY VALUE PROBLEM
FOR AN ELASTIC DIELECTRIC HALF-SPACE

K. L. CHOWDHURY

Department of Mechanical Engineerm" The University of Calgary, Calpr)?, Alberta, Cauda

(Received 15 May 1981)

A......ct-Hankel transforms are used to construct a closed·form solutIOn for the axisymmetric boundary
value problem of a pomt charge forced normal to the surface of an isotropic elastic dielectric semi-space.
Exact closed form expressions are obtained for the components of displacement and polarization vectors In
terms of the Bessel fUnctlODS and the fundamental solutIOns (J/R), (e-/R), R bema the distance from the
source point. The electric potential fields are determined both Inside and outside the elastic dieleetnc
5eml-Space. In the absence of electric polarization deets, the problem reduces to the dassicaI axisym
metnc Boussinesq problem of a point force applied normal to the surface of an isotropic elastic semi-tpace.
The expressions of the components of displacements derived from tIus particular case are found to qree
with known results

I. INTRODUCTION

Elastic dielectric materials exhibit linear piezoelectric effects and have become of importance in
modern technology because of their use in the analysis and design of crystal oscillators, filters
and transducers[I]. Classical phenomenological theory of peizoelectricity is concemed with the
interaction between the strain tensor and the electric or polarization vector and is not derivable
as the long wave limit from the modem theories of lattices of electrically polarizable atoms [2],
(as classical elasticity theory can be derived from the Born-von-Karmon theory of monoatomic
lattices of mass points as a long wave limit). This discrepancy in the continuum theory of
classical piezoelectricity has recently been observed by Mindlin [3] and elimiDated by acIdina to
the stored energy of deformation and polarization a functional dependence on the polarization
gradient. The new mathematical theory has interesting novel properties and amonast others, it
predicts the existence of surface energy of deformation and polarization which has been
measured in the Iaboratory[4] and calculated on the basis of atomic consKierations[5].

Due to the nature of the equations of equilibrium very few boundary value problems have
been sohred within the framework of Mindlin's theory. The authors[6] used the method of
images and Hankel transforms to study the problem of a point char&e placed at a finite distance
beneath its surface. Schwartz[1] constructed Papkovitch functions for Mindlin's theory analo
gous to those of classical elasticity and used these to solve the problem of a concentrated force
in an infinite elastic dielectric COlltinuum. A sinaular integral formulation of the boundary value
problems was established by the authors [8] using the discontinuity theorems of single and
double layer potentials.

In this paper, the axisymmetric boundary value problem of a point charge forced normal to
the surface of an elastic dielectric semi-space is solved by the method of Hankel transforms.
Exact closed form solutions are constructed for the components of the displacement and
polarization vectors in terms of the Bessel functions and the fundamental solutions 11R and
(e-mRIR), R being the distance from the source point. The potential fields are determined both
inside and outside the elastic dielectric semi-space. For the case when the electric effects are
absent the problem is reduced to the classical Boussinesq problem of a point force applied
normal to the surface of an isotropic semispace and the components of the displacement vector
derived are found to agree with known results [9].

2 BASIC EQUATIONS

For a homo,eneous isotropic elastic dielectric semi-space, referred to an axisymmetric
cylindrical polar coordinate system (T, 8, z), the components of the displacement vector u, the
polarization vector P and the potential field t/> assume the form (u" 0, liz), (P" 0, Pz) and q,(r, z),
respectively.
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The equations of equilibrium are given by

C[02U' +! au, _ u,] +c 02U, +(c _ C ) 0211z +d[02P,+! oP,
7 r or 7- 44 ai! 44 oriJz a;r r or

(2.1)

V2t/Jo =0, in R'

(2.3)

(2.4)

(2.5)

(2.6)

where ,po is the electric potential in the exterior vacuum R' and where J=(j" 0./.), E=
(E" 0, Ez) and Pc are body force vector. the electric force vector and the volume chute.
respectively. and h12• h44• C12' C44, d 12• t4. are dielectric constallts with

x =XI2 +2X44(X =h, c, d), h* =h44 +b,1'

Components of the stress tensor and the electric tensor are given by (6]

T" = d l2 div P+2d44 a;; + Cl2 div u+2C44 iJj);

T,. = dl2 div P+ 2d44 Pr + CI2 div u+ 2C44 U,r r

Tzz =dl2 div P+2t4. a:; + CI2 div u+2C44 ~;

T =T. =d (aPr + oPz) +C (all, +!!L)
z, rz 44 tJz ar 44 az or

E,. =bt2 div P +2b44 P, + d l2 div u + 2d44 U, + hor r

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
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Eu = bl1 div P+ 2b44 P, + dl2 div U+ 2d44 aall: + bor z

E = b (ap,+~) + b-n (ap,-~) + d.u (au, +!!!.J.)
zr 44 tJz ar az ar az ar

E =b (!!I.+~)+b-n(~_ap')+d (au,+~)
n 44 tJz ar ar az 44 az ar

. aut audlvu=-'+-u +_z.
ar r' az
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(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

The problem
Let the plane z = 0 of the cylindrical polar coordinate system coincide with the surface of

the elastic dielectric semi-space with the positive direction of the axis of symmetry r = 0,

pointiaa towards its interior.
For the axisymmetric boundary value problem of elastic dielectric semi-space subjected to a

cbaqed pin normal to its surface, we shall determine u" Uzo P" Pzo t/J, t/Jo satisfying eqns
(2.1)-(2.6) and the boundary conditions

T. (r. 0) =N 8(r)
u , r '

Pz(r, 0) =0, P,(r,0) =0

(2.19)

(2.20)

t/J(r, 0) =t/Jo(r, o).~ [pz - Eo (~+~)] =- fo F 8~) (2.21)

where 8(r) is the Dirac delta function and N and F are constants.
As bas been pointed out in [10] the above set of boundary conditions permits latitude in

specification of boundary conditions in the sense that the polarization, P, or the potential, t/J,
topther with their derivatives may be prescribed on the boundary of the reaion.

3. SOLUTION BY HANKEL TRANSFORMS

In this section, we use Hankel transforms to transform the homogeneous partial difterential
equations system (2.1)-(2.6) and the boundary conditions (2.19)-(2.21) to a system of ordinary
difterential equations with constant coefticients to which the solution is obtained.

Let

{U,U,z),P,U,z)}= i'" rJ.(tr){u"P,}dr (3.1)

{uz(~, z), Pz(~, z), 4J(~ z), 4JoU, z)} =i'" r Jo(~r) x {un Pn t/J, t/Jo} dr (3.2)

Applying r: rl;(~r) to eqn (2.1), (2.3) and f: rlo(lr) to eqns (2.4)-(2.6), we obtain the following
transformed system of equations

[C44,D2 - c~2]u, - (c - C44)g)uz + [d.u,D2 - d~2]p, - (d - d44)~DPz = 0 (3.3)

(c - C44)g)u, + [c,D2 - C44~2]Uz+(d - d44~DP, + [d,D2 - d44~2]Pz =0 (3.4)

[d.u,D2- d~2]U, + [d - d44]g)uz + [b*,D2 - b~2 - alP, -(b - b*)UJPz + HI =0 (3.5)
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(d - d44)~Dur+ [dD2
- d44~21uz +(b - b*)8)Pr+ [bD2- b*e2

- alPz- D.; =0 (3.6)

~r +DPz- €o(D2 - ~2)q, =0, in R (37)

(D2 - e)q,o =Q, in R' (3.8)

d
where D = dz and we have used the results

f '" [a21 1 al v
2 ] f'"orJv(~r) a;z+,ar-?I dr=-~2 orJv(~,r)fdr

f'" rJo(~r) [Z+~fJdr= ef' rJ1Ur)!dr

f' rJMr)~ dr =- ef' rJo(er)f dr.

The solution of the transformed homogeneous system of eqns (3.3H3.8) is given by

(3.9)

(3.10)

(3.11)

(3 13)

(3.14)

(3.15)

(3 16)

(3.17)

where A.(i = 1- 6) are arbitrary functions of t to be determined from the boundary conditions
(2.19H2.21). (} = t2 +m,l (i = 1,2) and ml

2 are given by

(3.18)

The expressions for some of the transformed components of stress and electric tensors are
given by

Tzz(~. z) = - 2C44eA1 e-€z - 2t'{2aa- 1d44e+ C44(C«

+ C - c,uez)IA2 e-€Z +2C«e{C44 +(c - c«)ezIA3e-e
z +2a~2A4 e -{I'

(3 19)

Ttr(~. z) =- 2c«~AI e-tz - 2el2aa-ld44~2 + c«(c

- c - c«ez)]A2e-~ +2c«e(c - c - C«~Z]A3 e-fz +2a«IA4 e -(IZ (3.20)

EtAe, z) = - 2d«~AI e-€Z - 2e{2b«a-1a~2 + a + d44c«

- d«c - c«,z]A2e-ez +2ela +d44c« - d«c - C«~Z]A3 e-tz

+ [CE;'(l + €oa)+2pe2]A4e-"z +2ml~'2As e-'2Z+ bo 8~{) (3.21)
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EuU, z) =- 2fd.uAIe-tz -2~2aa-'b,wE2+ d,w(c- C- C,wEl)]

X A2e-tz +2E[c - C- c,wEz]d,wA3e-tz +2~l'IA. e-l1z

+[2mlE2 - aC,wlA. e-l,: (3.22)

a =cd,w - dc,w, (3.24)

(3.25)

The boundary conditions eqns (2.19)-(2.21) lead to the following system of six algebraic
equations

2afA3+u;'A. =~ (3.30)

2at2A3+cE;Jl'IA.=~+F. (3.31)

The solution of the above system of equations is obtained and is given in Appendix A.
The transformed components of the displacement and polarization vectors and the potential

fields are given by

u,U,z)=2 (N )~[c,w+(c,w-c)tz]e-l:
Cow C- Cow s

+EoF [[ - d - t4. +!(c,w - c)Ez ]e-tz +-:4-" t(t+ l'1)(e-lIZ
C-C,w C eml

-e-l:)+~(t +l'2)(l'2e-l,: - te-tz)] (3.32)
c,wm2

DzU, z) = N ! [_-L_ El] e-l : + €oF [- 6e-l :
2c,w t c - Cow

+~U+l'I)«(le-l'Z-Ee-I:)+~U+l'')
cml C,wm2

xU e-0" - (2 e-I:)] (3.33)

(3.34)
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PzU, z) =- EoF [::hu + (1)«1 e -{IZ - ~ e-eZ
)

ml

+::h (~+ (2)(~e -(2
Z

- (2 e-ez>] (3.35)
m2

4>0(~, z)= - t N
) e-ez +E"F [- 200 ~+~(~+ (I)

C44 C - C44 C ml

+~~u+ (2) ]e-cz. (3.37)

4 THE SOLUTION AND THE PARTICULAR CASE

The inverse Hankel transforms of order 1 and 0 corresponding to eqns (3.1), (3.2) are defined

{u,.(r, z). Pr(r. z)} =fO ~JMr){u,., Pr } d~

{uz(r. z), Pz(r, z), 4>(r, z), 4>o(r, Z)} =f' Uo(~r)

{uz. P" t/J, t/Jo} d~

(4.1)

(4.2)

Multiplying the eqns (3.32), (3.34) by f: UMr); eqns (3.33), (3.35) and (3.37) by f: Uo(~r).

integrating with respect to ~ and using the formulae given in Appendix D, we obtain

{ a [ d q2 d44 ]( 1) a [d a
2

uz(r, z) =EoF az 8 + cm,2 Dz2 + c....ml A( + m2) R - a1 cmt'ii!

x(e;I') +C::22 A( _ m2)(e;zR)]

+a~~2[c;,2A(-m,)(Io(~1 R- Z)Ko(~1R+ z)
+ C::22 A(-m2)10(!f R - z)]Ko(~2if+Z) -iz [C;12 A( + ml)J(m,)

+~ A( + mz)J(mz)]} (4.4)
C....m2
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F a [ a (l_e- m,R
) ( (m -) (m -))t/J(r, z) =r:r az - az R + A( - ml) 10 TR - z Ko TR + z

+ A( + m,)J(m l )] + t/Jo(r, z)

where A( ± ml) are the differential operators defined by

A( + ) - a
2

+ 2 ( • - 1 2)_m, -7ji1_m, 1-"

(4.6)

(4.7)

(4.8)

J(m,), (i =I, 2) are integrals given by (B9) in Appendex Band R =V(r +Z2), is the distance
from the source point.

The mechanical and the electrical stresses are determined from eqns (2.8}-(2.18).

The particular case
The solution to the classical Boussinesq problem of a concentrated point force applied

normal to the surface of an isotropic elastic semi-space can be derived by neglecting the electric
effects. Setting

one finds that

Pr(r, z) =Pz(r, z) =t/J(r, z) =t/Jo(r, z) =0

and the residual expressions for the displacement vector components are obtained as

(4.12)

(4.13)

(4.14)
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u.(r. :) = _!:!- [_C -z .!-](.!.)
• 2C44 C - C44 aZ R

(4 IS)

which with mmor change in notation (CI2 = A, C44 = p.. C = A+ 2p., N = - (P/21T) agree with the
known results [9]

REFERENCES
I W P Mason. P,ezoeJectnc Crvstals and Thetr ApplicatIOns to Ultrasonics D van Nostrand New York t IlJ501
2 W Cochran. Phonons In Perfect Lattices Plenum Press. New York (1966)
3 R. D Mindhn. PolanzatlOn gradient In elastic dlelectncs Int J Solids Structures 4.642 (1968)
4 M P Tosi. Solid State PhYSICS. Vol 16 Academic Press. New York (1964)
5 G C Benson and K S Yun. The SolId-Gas Interface (Edited by E A Flood) Dekker. New York (\967)
6 K L. Chowdhury and P G Glockner. POint charge in the interior of an elastiC dlelectnc seml·'pace 1m J En~nlf SCI

IS. 493 (1977)
7 J Schwartz. SolutIOns of equatIOns of equdlbnum of elastic dlelectncs 1m J Solids Structures 5. 1220 (1969)
8 K L Chowdhury and P G Glockner, Singular Integral equations in elastiC dlelectncs Int J Solids Structures 11 186

(1975)
9 I N Sneddon. Founer Transforms McGraw Hill. New York (l95\)

10 R D Mmdltn, PolanzatlOn gradient In elastic dlelectncs Courses and Lectures, No 24. CISM Udlne. 1979
II H Bateman. Tables of Integral Transforms. Vol 2 (1%0)

APPENDIX A
The solutlon of the algebraiC system of eqns (3 26H3 31) IS found and IS given by

A N I~EoaFI[[ )
1=-2c44(C-C44)T c + 2a f ~(~+(1

+~(~+ (2)J

where

8 = cd44 - dC44 = a
C44(C - C44) C44(C - C44)

APPENDIX B
Some useful Integrals for Inverse Hankel transforms

(a) Integrals lDvolvlOg Jo(~r)

(All

IA3)

(A4)

lAS)

(A6)

(A7)

(BI)

(82)

(B31

(B4)
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(b) Inte,rals involvmg JMr)

f. "' 1 a' ( z)re-fzJ.(tr)d~=(-I)'-- 1--
o raz' R

f. "' a'
o r,Je-fzJMr)d~=(-1)" az,-ia,!(m)

1: tr- I e-"J.(tr)df= (_1)0+1 :;:r [Io(!f R- z)~(!f l+i)]
rr e-llJ.(tr)dt= (-I)" ~ :;, (e-'" -je-ld

)

where

f r1e-fzJo(fr)df=J(m)

R .. Y('::+ z2), (= Y(E2+ m~
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(B5)

(B6)

(B7)

(B8)

(B9)

(B10)


